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ABSTRACT 
The paper reports the first results of a work 

carried out in close collaboration between Astron 
Buildings SA, a manufacturer  of industrial steel 
buildings, and different groups of civil engineers 
and mathematicians of the University of Liège to 
develop an automatic design method for 
structures with tapered members. This research 
aims at improving the current method of trial- 
error followed by experienced engineers to 
optimize the frames constrained by a chosen 
national construction code and the technological 
constraints of the producer.  

The main benefit of this collaboration arises 
through the application of a mathematical 
algorithm based on the sequential quadratic 
programming method (SQP) in order to reduce, in 
the first step, the weight of the building, under the 
great number of constraints. The second step, not 
yet started, will be devoted to the minimization of 
the real cost of the frame. This report introduces 
the first results of this industrial application. 

 
INTRODUCTION 

Astron Buildings is  the actual European 
leader on the steel building ma rket. Experienced 
for 35 years  in industrial and commercial 
applications, its products are perfectly suited to a 
wide range of projects from simple frames and 
elementary configurations up to complex 
modules. In this very competitive market, Astron 
Buildings distinguishes itself by its original 
process based on tapered members and not 
laminated members (see Figure 1). Much raw 

material can be saved in this way but additional 
manufacture costs are induced. The approach is 
nevertheless cheaper than laminated solutions if 
the design is well studied. The design procedure 
is therefore very critical but is complicated by the 
large number of constraints that must be taken 
into account.  

 
 

 

Figure 1: tapered section elements. 

 
The first constraints appear at the production 

stage.  The profiles are manufactured by Astron in 
two factories in Luxembourg and in the Czech 
Republic where the rafters and columns 
composing the frames are also dimensioned and  
fabricated. The height, width and thickness of the 
webs and flanges of these elements are allowed to 
change along a given element. At this stage, the 
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dimensions of the profiles are limited by the 
production constraints and by the technological 
limits of the cutting press and automatic electric 
welders dedicated to the handling of these 
profiles. The second category of constraints is 
related to the resistance and the stability of the 
structure.  The design must indeed be checked 
against these resistance and stability conditions, 
that are imposed by national and/or European 
codes.  

To cope with the numerous calculations 
required, the design department of ASTRON has 
developed a software — the APS code — to 
check the resistance and the stability conditions at 
each section of the frame and to ease the 
identification of the required improvements of the 
design.  

Currently, the strong competition in the steel 
construction market pushes engineers to optimize 
the cost of the structures. To do so, they rely on 
their experience and optimization tables 
(elementary optimization rules) or follow a ‘trial 
and error procedure’, to reduce the cost. This time 
consuming and empirical method offers no 
guarantee to identify the optimum design. 

The optimization procedure could however be 
improved by a computerized automatic strategy.  
This fact motivated the start of a collaboration 
with mathematicians and engineers of several 
departments of the University of Liège to develop 
an automatic optimization method based on a 
mathematical algorithm. The results achieved 
after a first feasibility study of this approach give 
confidence about the ultimate success of the 
project. 

The first sections of the paper provide an 
introduction to the formulation of the problem 
and to the algorithm that is used for optimization. 
In the third section, we discuss particular aspects 
of the application of the optimization algorithm to 
the problem. Preliminary results are then 
presented and discussed. Conclusions and 
perspectives close this paper. 

 
PROBLEM FORMULATION 

Before addressing the general problem of the 
optimization of an arbitrary  structure, a simple 
(but representative) configuration has been 
selected as test case for a feasibility study.  The 
basic case that is studied here is the classical 
frame shown in Figure 2 — an AZM1 structure in 
the ASTRON terminology —.  

The aim of the optimization is to identified the 
cheapest structure. The quantitative assessment of 

the global cost of a structure is a very difficult 
exercise however.  Not only the cost of the raw 
material, but also the cost of manufacture, 
handling and transport should be taken into 
account. This cost evaluation requires an in depth 
analysis of the different steps of production and 
appropriate imputation rules for the various direct 
and indirect costs. This study is currently under 
way. As a first step, however, the weight of the 
structure is taken as the objective function of the 
optimization.  The weight is easily expressed in 
terms of the dimensions of the different beams 
composing the frame. The formula can be 
improved by taking into account the weights of 
haunches and connectors. These are however 
neglected in the feasibility phase.  The work 
concentrates thus on the dimensioning of the 
webs and flanges of the 4  elements (2 columns, 2 
rafters) composing the AZM1 frame. 

 
 

 

Figure 2: AZM1 structure. 

 
The formulation of the constraints begins with 

the constraints generated by the national steel 
construction code. The Eurocode 3, selected in 
this optimization problem, imposes the 
verification of 13 ratios at a defined number of 
sections of the frame as well as limitations on the 
maximum displacements at the top of the columns 
and at the top of the roof. These Eurocode 3 
constraints must be satisfied for various  
combinations of  loads.   

The other constraints taken into account in the 
formulation are the technological constraints 
associated with the production of the elements 
and the erection of the building. Among these 
constraints we can list : 
§ equality of the widths of the flanges along 

each beam, 
§ maximum slope between the flanges, 
§ minimum thickness for welding 

conditions, 
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§ limit dimensions imposed by steel 
supplier, 

§ minimum dimensions so as to avoid the 
flange buckling caused by the weldings, 

§ dimensions prescribed by the customer’s 
application, 

§ continuity of heights. 
 

SQP ALGORITHM FORMULATION 
The program solves optimization problems 

such that: 
 
 min f(x) under the contraints ( ) 0xgi ≥  (1) 
 

where f(x) is the objective function — the weight 
of the structure—, x is the vector of parameters — 
the dimensions of the elements —and the 
functions gi(x) (i = 1,2,...,ncon) denote the 
technological and stability constraints. 
 
Quadratic subproblem 

The mathematical algorithm used to solve the 
optimization problem is based on the sequential 
quadratic programming method (e.g. Fletcher, 
1987).  This method amounts to the solution of a 
serie of quadratic sub-problems based on local 
quadratic models of the objective function and the 
constraints. At each step of the iterative 
resolution, the quadratic sub-problem  
 

min f(xk) + ∇fT(xk)(x-xk) + 2
1  (x-xk)

TW(xk)(x-xk) 

 (2) 
under the linear constraints 

gi(xk)+∇gi
T(xk)(x-xk)≥ 0  (i=1,2,...,ncon)  (3) 

  
is build around the current iterate xk. 
The values of the objective function f(xk) and of 
its gradient ∇f(xk) appearing in  (2) are available in 
analytical form. The values of the constraints 
gi(xk) at the current iterate are obtained by running 
the APS code.  The gradients ∇gi(xk) are 
computed by finite differences from repeated runs 
of the APS. The matrix W(xk) denotes an 
approximation of the Hessian matrix of the 
Lagrangian function 

 L(x, λ) = f(x) - ∑
=

λ
ncon

1i

ii )x(g  (4) 

where λi (i=1,2,...,ncon) are the so-called 
Lagrange multipliers associated to the different 
constraints.  This matrix W can expressed as Wf 
+ Wc where Wf and Wc are associated 
respectively with the second derivatives of f and 

of the gi’s one.  The former are available in 
analytical form while the latter must be 
approximated using a BFGS approach (e.g. 
Fletcher, 1987). 

 
Resolution of the quadratic sub-problem  

 
Once the quadratic sub-problem (2)-(3) is 

available, a feasible point is sought for the 
linearized constraints (3). A classical simplex 
method (e.g. Dantzig, 1963) is used for this 
purpose.  This feasible point serves then as an 
initial point for an iterative resolution of the 
quadratic sub-problem. 

 
The resolution of the quadratic sub-problem 

proceeds using an active constraints strategy.  The 
constraints in (3) that are satisfied with the 
equality at the feasible point are called active.  
The problem 

 

 min f(xk)+∇fT(x-xk)+ 2
1 (x-xk)

TW(x-xk) (5) 

under the nc active linear constraints 
(nc≤ ncon) 

 gi(xk)+∇gi
T(x-xk)=0   (i=1,2,...,nc) (6) 

 
is then solved using a reduced gradient approach. 
In other words, the minimum of the quadratic 
objective function (5) is sought in the linear 
subspace defined by the active constraints.  An 
orthonormal basis for this subspace is generated 
using a QR matrix decomposition of the matrix A 
formed by the components of the nc gradients ∇gi 
of the active constraints. 

When solving (5)-(6), some of the non active 
constraints can become active. Also, it may be 
necessary to remove some of the constraints from 
the active set to achieve a further reduction of the 
objective function.  This can be checked by 
checking the sign of the Lagrange multipliers 
given by 

 
 λ = AT ∇f (7) 
 
As a result, the set of active constraints is 

updated repeatedly until a minimum is found 
which satisfies all the (active and non active) 
constraints (3).  

 
Global convergence and merit function 

The solution of the quadratic sub-problem is 
used to define a research direction dx along which 
the minimum of the merit function 



Inverse Problems, Design and Optimization Symposium 
Rio de Janeiro, Brazil, 2004 

 

 F(x) = f(x)+ν [ ]∑
=

ncon

1i

2
i ))x(g,0min(  (7) 

is sought using a line search procedure.  To save 
computer resources, an approximate line-search is 
carried out. The merit function F(xk+αdx) is 
computed for different values of α and the line 
search is stopped when the Armijo conditions are 
satisfied, i. e. when a sufficient decrease of F is 
obtained. The point  xk+αdx is then taken as the 
new iterate xk+1. 

 
The line search procedure based on the exact 

merit function F can be shown to ensure global 
convergence towards the minimum of the original 
problem (1) on the condition that the penalty 
parameter ν is such that 

 

 ν ≥  ∑
=

λ
ncon

i
i

1

2)(   (8)  

where λi are the Lagrange multipliers at the 
optimum. 
  
Ending and convergence 

The algorithm stops when a local optimum is 
reached, i.e. when the gradient of the Lagrangian 
function is below a predefined tolerance value or 
when the line-search fails to produce any 
improvement of the objective and merit functions. 

  
ALGORITHM APPLICATION 

The Astron’s application takes place in a 
routine called ‘simul’. This routine computes the 
objective function, the constraints and their 
derivatives that are required for the optimization. 
The parameters identified for the design of the 
frame are gathered in a vector whose size must be 
constant during the optimization process. In the 
usual empirical practice, designers can divide the 
web and flanges into sections of various 
dimensions. The location of the web and flanges 
divisions does not need to correspond and their 
number can be different for the web and flanges. 
Figure 3 shows an example of such divisions of a 
rafter. A variable number of divisions could not 
be managed during the optimization, each 
element is therefore divided into 4 sections of 
equal length. 

Figure 4 presents the selected definition of 
frame dimensions. The design of each element 
can be defined by 18 parameters:   

§ 5 web heights  
§ 1 flange width 
§ 4 web ticknesses 
§ 4 interior flange thicknesses  
§ 4 exterior flange thicknesses. 

 

Figure 3: different locations of divisions. 

 

 

Figure 4: Frame divisions. 

 
 

Figure 5: 1/4 element variables names. 

 
 

This distribution already allows the 
simplication of two technological constraints:  
§ the heights continuity so as to avoid web 

step-up. 
§ the common width of flanges along a 

beam. 
The parameters vector is thus dimensionned to 
contain the 4 x 18 parameters, this choice enables  
to add additional  elements to be optimized in the 
future. 

The objective function, its derivatives, the 
constraints and their derivatives are evaluated for 

Haunch 
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each call of ‘simul’. The weight is an analytic 
relation, its first and second order derivatives are 
easily established analytically. The definition of 
the technological and Eurocode constraints takes 
place in the second part of the routine. These can 
be divided in two categories:  
§ the contraints expressed by analytic 

relations 
§ the contraints computed by calling the 

APS code.  
Constraints like maximum slope between the 

flanges fall in the first group ; they can be 
expressed  by formulations similar to:  

 
 g(x) = ∠flange - 15 ≥ 0 (9)  
 
 The second category is made of the Eurocode 

ratios and the maximum displacements. The 
original implementation of the APS did not 
provide any direct access to these data. 
Modification of these routines have therefore 
been implemented in order to output the adequate 
ratios and displacements into a structured data 
file.  The new implementation short-cuts useless 
interventions of the  operator to automate the 
execution of the code. The constraints computed 
by APS are expressed as differences that must 
remain non negative. For example,  

 
 g(x) = 1 - Ratio ≥ 0 (10) 
 (Eurocode 3 imposes Ratio ≤ 1) 
 
The last part of the routine ‘simul’ is devoted 

to the evaluation of the first order derivatives of 
the objective function and constraints.  The 
derivatives of the weight of the structure are 
evaluated analytically.  For the constraints 
evaluated by APS, the computation of the 
derivatives is done by finite differences. The 
constraints are first computed by repeated calls of 
the APS for positive and negative perturbations of 
the parameters and the derivatives are computed 
subsequently as 

 onperturbati2
RatioRatio

x
)x(gi

×
−=∂

∂ −+  (11) 

The number of APS runs required for the 
evaluation of the derivatives of the Eurocode 
constraints is thus given by twice the number of 
optimized parameters (running time of 1 
execution: 1-2 sec. on the M&S department’s 
machine). This second method used to calculate 
the sensitivity matrix is the weak point of the 
optimization: the time consuming ‘APS’ 

execution when the computation of Eurocode 
contraints derivatives is required. A flag allows to 
skip the computation of the derivatives at some 
points of the algorithm, hence reducing 
optimization time. 

The structure of the routine ‘simul’ is suitable 
to problems of any size. The basic frame asks for 
the verification of the 13 Eurocode ratios at 90 
sections, hence a total of 90 x 13 constraints in 
addition to the technological constraints. A frame 
optimization for one load combination is therefore 
constrained by more than 1000 constraints and the 
complete optimization problem  under the whole 
set of load combinations by more than 5000 
constraints. 
 
RESULTS OF FIRST OPTIMIZATIONS 

In the feasibility study much time was spent in  
the establishing of the analytic relations, in the 
programming of the derivatives loops and in 
modifications of the Astron’s program. 

  Debugging and validation of the integration 
of the APS and SQP codes was done on the 
simplified problem of the parameters optimization 
of one single beam under its Eurocode 
constraints. This simplification has permitted to 
reduce the optimized parameters number to 18 
under the restriction of its 14 sections verification 
and thus 182 constraints. This choice permits to: 
§ save time during the development, 
§ locate easily the troubles in the routines. 

The first optimization, concerning the left column 
under its Eurocode constraints, is started with  an 
input file containing random parameters. These 
initial parameters violate some constraints, the 
initia l weight is quite low. About 10 iterations are 
sufficient to  reach a local optimum. Figure 6 
shows the  evolution of the objective function and 
the number of violated constraints during the 
optimization process . The dimensions of the left 
column are thus optimized, respecting its 182 
Eurocode constraints for one load type. 
 In a second step, additional constraints are 
introduced: maximum displacement and 
maximum slope between the flanges in addition 
to the Eurocode constraints. The optimization 
quickly obtains a reduced weight. 
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Figure 6: objective function of the beam. 

 
Only one constraint limits this reduction: the 
maximum lateral displacement at the top of the 
left column. The optimum is found from a line 
search along the constraint direction. The weight 
during the optimization is presented at Figure 7. 

 
 

 
Figure 7: weight=f(iterations)  

 
Once carefully checked in the simplified 

framework of a single column, the optimization 
code is applied to the whole AZM1 frame under 
one load type. The technological constraints 
aren’t yet accounted for and only the 1170 
Eurocode constraints limit the problem. This first 
optimization under a large number of parameters 
(72) and a lot of contraints aims at  testing the 
behaviour and the management  of the algorithm 
with a very constrained application. The initial 
parameters are the parameters optimized by 
Astron’s engineer with their empirical method. 
They are optimized with respect to the constraints 
for 5 different loads combinations  and the 
technological constraints. The two optimized 
results can’t be compared: 

 
§ one is obtained for 1 load combination, the 

other 5. The last one is more constrained. 

§ one is computed for a cost optimization 
and the other compared to the weight 
optimization. 

This initial point is realistic and is an interesting 
starting point. Figure 8 shows the convergence of 
the optimized weight around 1780 kg. 
 
 

Figure 8: obj. function with violated constraints 
 
 

Memory problems appeared when enlarging 
the problem from 1 element to 4 elements.  The 
simplex routine used for the identification of an 
initial feasible point uses indeed a double 
precision matrix of 1200x1200 ; i.e. too large to 
be managed by the computer. As a first step, the 
precision of this matrix is reduced to simple 
precision. A reduce storage dual simplex method 
will be used in the future to save memory. 

 
CONCLUSION AND PERSPECTIVES 

The feasability phase is concluded with 
encouraging results. The algorithm reaches a 
consequent and efficient minimization of the 
weight, taking into account a large number of 
constraints. Improvements of the different 
optimization and data handling routines will 
however be implemented in the near future to 
cope with an unlimited number of constraints. 

These presented results introduce the first 
phase of a frame optimization: the actual 
parameters resulting of the optimization are 
continuous parameters. Practically, only discrete 
dimensions can be provided by the steel producer, 
the optimized values have thus to be converted to 
discrete values from a catalog. In general, the 
optimum obtained with continuous parameters 
does not  correspond to the optimum of the 
discrete case. The second phase of development 
will rely on a branch and bound method to cope 
with this discrete optimization problem.  In a third 
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and ultimate step, the code will be adapted to 
optimize the global cost of a frame.  
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